# Thallium Dicyanoaurate(I), TI[ $\left.\mathrm{Au}(\mathbf{C N})_{2}\right]$, and Cesium Dicyanoaurate(I), $\operatorname{Cs}\left[\mathrm{Au}(\mathbf{C N})_{2}\right]$ 

By Nils Blom and Andreas Ludi<br>Institut für anorganische Chemie, University of Bern, CH-3000 Bern 9, Switzerland<br>Hans-Beat Bürgi<br>Laboratorium für chemische und mineralogische Kristallographie, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland<br>and Karel Tichý<br>Institut für Reaktortechnik der ETH Zürich, CH-5303 Würenlingen, Switzerland

(Received 9 December 1983; accepted 11 June 1984)


#### Abstract

Tl}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]: M_{r}=453.373\), orthorhombic, Pbcn, $a=7.092$ (2), $b=30.429$ (7), $c=9.140$ (5) $\AA$, $V=1972.4(2 \cdot 2) \AA^{3}, \quad Z=16, \quad D_{m}=6.00(13), \quad D_{x}=$ $6.105 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ neutrons, $\quad \lambda=1.0405$ (9) $\AA, \quad \mu=$ $0.048 \mathrm{~mm}^{-1}, \quad T=298 \mathrm{~K}, \quad F(000)=777.0 \mathrm{fm}, \quad R=$ 0.038 for 587 observed reflections. $\mathrm{Cs}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$ : $M_{r}=381.908$, orthorhombic, Pbcn, $a=7.42$ (1), $b$ $=32.67$ (1), $c=9.369$ (3) $\AA, V=2271.2(5 \cdot 3) \AA^{3}, Z$ $=16, D_{x}=4.46$ (1) $\mathrm{Mg} \mathrm{m}^{-3}$, Мо $K \bar{\alpha}, \lambda=0.7107 \AA$, $\mu=31.96 \mathrm{~mm}^{-1}, T=298 \mathrm{~K}$, cell constants determined only. There are three crystallographically inequivalent $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$ ions in the unit cell of $\mathrm{Tl}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$, two of which are linear, parallel to $\mathbf{b}$ and related by pseudotranslation; the third is approximately linear, parallel to the $a b$ plane and inclined by $51^{\circ}$ to $\mathbf{b}$. The $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$ units form a two-dimensional network of relatively short $\mathrm{Au} \cdots \mathrm{Au}$ distances [Tl salt: 3.037 (4), 3.068 (4), 3.560 (1) $\AA]$. $\mathrm{Cs}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$ was found to be isostructural to $\mathrm{Tl}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$ from precession photographs.


Introduction. The $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$ion in solution shows a charge-transfer absorption at $>40000 \mathrm{~cm}^{-1}$. Crystalline $M\left[\mathrm{Au}(\mathrm{CN})_{2}\right]\left[M=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Tl},\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]$ salts show the corresponding absorption shifted to lower energies by up to $20000 \mathrm{~cm}^{-1}$ (Tl: $20300 \mathrm{~cm}^{-1}$, Cs: $16300 \mathrm{~cm}^{-1}$ ) (Mason, 1976; Blom, 1983). This behavior is similar to that observed for $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$ and its crystalline salts. In the latter case the variation in absorption energies has been explained in terms of linear arrays of $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$ ions in which some ions are related by other than translational symmetry, the $\mathrm{Pt} \cdots \mathrm{Pt}$ distances $(3 \cdot 1-3 \cdot 7 \AA)$ and the resulting Davydov splitting (Day, 1975). In an attempt to understand the spectroscopic properties of the $M\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$ salts we have undertaken a series of crystal structure analyses.

Experimental. $\mathrm{Tl}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$ was prepared by precipitation from aqueous solutions of $\mathrm{Tl}_{2} \mathrm{SO}_{4}$ and $\mathrm{K}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$. Single crystals of a size suitable for neutron diffraction experiments were grown by a temperature-gradient technique (Arend, 1982). Density determined by measuring the loss of weight in water. Cell parameters from 22 reflections with $11 \cdot 5 \leq \theta \leq 15 \cdot 1^{\circ}$. CAD-4 diffractometer, Mo $K \bar{\alpha}$ radiation.
Interpretation of X-ray diffraction data entails several problems since absorption of X-rays is high [ $\mu$ (Mo $K \bar{\alpha}$ ) $=61.19 \mathrm{~mm}^{-1}$ ]. Therefore, 1302 neutron diffraction intensities (including 210 intensities absent in Pbcn) were collected from a crystal $1.14 \times 2.14 \times 3.08 \mathrm{~mm}$ (along a, b, c respectively) on the four-circle diffractometer of the Institut für Reaktortechnik at the reactor Saphir (Würenlingen, Switzerland). The angle $\psi$ was chosen such that the reciprocal vector ( $h k l$ ) corresponding to the reflection being measured and its two nearest neighbors, i.e. the vectors $(h, k \pm 1, l)(b=30.429 \AA)$, were in the equatorial plane. The detector window was carefully adjusted to receive the full width of the diffracted beam only. This procedure maximizes the resolution between neighboring reflections for pure $\omega$ scans; it also ensures maximum resolution for the $\omega: g \theta$-scan technique used here ( $g$ between 1.5 and 2.0 ; Pantazatos \& Werner, 1973; Werner, 1971). Data were collected in the range $(\sin \theta / \lambda)<0.525 \AA^{-1}, 0<H<6$, $0<K<29,0<L<8$. Intensities of standard reflections varied statistically by $<0.95 \%$ ( $\overline{8} 02$ ), $1.08 \%$ ( 060 ), $1 \cdot 13 \%$ (004) during the six-months period of data collection. Data reduction, Lorentz and absorption corrections (Tichý, 1973); transmission factors 0.922 to 0.964 .1092 reflections allowed in Pbcn, 743 observed $[F>3 \sigma(F)], 587$ unique ( $R_{\text {int }}=0.0094$ ). Phase determination by direct methods [SHELX76 (Sheldrick, 1976) and MULTAN80 (Main, Fiske, Hull,

Lessinger, Germain, Declercq \& Woolfson, 1980)] failed, probably because of pseudosymmetry (see below). A substructure was determined from a Patterson map and the full structure inferred by trial and error. Refinement on $F$ s. The model was partially anisotropic ( 75 parameters) with equal vibrational parameters for those $\mathrm{C}, \mathrm{N}, \mathrm{Tl}$ and Au atoms that are related by pseudotranslation (see below). All $\mathrm{Au}(\mathrm{CN})_{2}$ groups were constrained to have the same $\mathrm{Au}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{N}$ distances ( $\sigma=0.002$ ); their refined values were 1.971 and $1.147 \AA$ respectively. Refinement of independent vibrational and positional parameters for all atoms resulted in statistically significant improvement of $R$ values, but introduced high correlation coefficients between parameters of atoms related by pseudotranslation. For the restrained and constrained model final $R=0.038, w R=0.037$. Final weights $w=$ $4.5152 /\left\{[\sigma(F)]^{2}+0.0001 F^{2}\right\}$. In the last least-squares cycle $(\Delta / \sigma)_{\max }=0.043$. No feature in the difference Fourier map calculated after the final refinement exceeded +0.45 and $-0.49 \mathrm{fm} \AA^{-3}(+1.8,-2.0 \%$ of the max. peak height of $24.7 \mathrm{fm} \AA^{-3}$ in an $F_{o}$ Fourier map). Secondary extinction accounted for by using the extinction factor included in the program SHELXX6 $\left[F^{\prime}=F\left(1-0.0001 p F^{2} / \sin \theta\right), \quad p=0.219(9)\right]$. Neutron scattering lengths (fm) $9.39(\mathrm{~N}), 8.9(\mathrm{Tl}), 7.6(\mathrm{Au})$ and 6.64 (C) (International Tables for X-ray Crystallography, 1974).
$\mathrm{Cs}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$ was prepared from an aqueous solution of $\mathrm{K}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$ by ion exchanging $\mathrm{K}^{+}$for $\mathrm{H}^{+}$ and subsequently neutralizing with CsOH . Cell parameters were refined from 20 reflections in the $\theta$ range 11.0 to $14.5^{\circ}$ measured on a CAD-4 diffractometer with Mo $K \bar{\alpha}$ radiation.

Discussion. $\mathrm{Tl}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$. The refined atomic positions and thermal parameters are given in Table 1*. Fig. 1 shows an ORTEP (Johnson, 1976) drawing of the contents of the unit cell. Interatomic distances and angles are given in Table 2, and the coordination of $\mathrm{Tl}^{+}$ is shown in Figs. 2(a) and 2(b).

The crystal structure of $\mathrm{Tl}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$ shows pseudosymmetry. All atoms except for $\mathrm{Au}(3), \mathrm{N}(31)$ and $\mathrm{N}(32)$ occupy positions that are within $\pm 0.3 \AA$ of the values they would have in a structure with cell constants $a^{\prime}=a, b^{\prime}=b / 2, c^{\prime}=c$ and the (nonstandard) space group $I m c b$. On going from Pbcn to $\operatorname{Imcb}$, two different sets of Wyckoff positions (orbits) 4(c) ( $0, y, \frac{1}{4}$ ) occupied by $\mathrm{Au}(1)$ and $\mathrm{Au}(2)$, respectively, in Pbcn merge into one orbit in Imcb, namely $4\left(a^{\prime}\right)\left(\frac{1}{4}, 0,0\right)$. Similarly four different orbits $4(c)$ occupied by $\mathrm{C}(11)$, $\mathrm{C}(12), \mathrm{C}(21), \mathrm{C}(22)$ in $P b c n$ merge into one orbit in

[^0]Imcb, $8\left(f^{\prime}\right)\left(\frac{1}{4}, y^{\prime}, 0\right)$. The same applies to $\mathrm{N}(11), \mathrm{N}(12)$, $\mathrm{N}(21), \mathrm{N}(22)$. The two different orbits $8(d)(x, y, z)$ occupied by $\mathrm{Tl}(1)$ and $\mathrm{Tl}(2)$, respectively, in Pbcn merge into orbit $8\left(j^{\prime}\right)\left(0, y^{\prime}, z^{\prime}\right)$. The same argument applies to $\mathrm{C}(31)$ and $\mathrm{C}(32)$. The $I$-centered substructure includes $73 \%$ of the scattering power in the unit cell.

The $\mathrm{Au}(3)$ atoms occupy a single orbit $8(d)$ in Pbcn . In neighboring cells along the $b^{\prime}$ axis in $\operatorname{Imc} b$ the atoms $\mathrm{Au}(3)$ alternately occupy one or the other half of the Wyckoff position $8\left(g^{\prime}\right)$, namely $\left(\frac{1}{4}, 0, z^{\prime} ; \frac{1}{4}, 0,-z^{\prime} ; \frac{3}{4}, \frac{1}{2}\right.$, $\left.\frac{1}{2}+z^{\prime} ; \frac{3}{4}, \frac{1}{2}, \frac{1}{2}-z^{\prime}\right)$ or ( $\frac{3}{4}, 1, z^{\prime} ; \frac{3}{4}, 1,-z^{\prime} ; \frac{1}{4},-\frac{1}{2}, \frac{1}{2}+z^{\prime} ; \frac{1}{4}$, $-\frac{1}{2}, \frac{1}{2}-z^{\prime}$ ). The atoms $N(31)$ and $N(32)$ occupy different orbits $8(d)$ in Pbcn, but the same orbit $16\left(k^{\prime}\right)$ ( $x^{\prime}, y^{\prime}, z^{\prime}$ ) in Imcb. Only half of the positions of this orbit are filled. The distribution of $N(31)$ and $N(32)$ at these positions is analogous to that of $\mathrm{Au}(3)$. This distribution of $\mathrm{Au}(3), \mathrm{N}(31)$ and $\mathrm{N}(32)$ is responsible for the most intense superstructure reflections $F(h k l)$ with $k=2 n+1$ (in Pbcn).

The pseudosymmetry described here is different from and more complex than that arising from so-called non-characteristic and extraordinary orbits (Wondratschek, 1976; Engel, 1983). In both of these cases choice of special coordinate values for one particular orbit leads to a system of points whose symmetry is higher than the symmetry generating the system of points in the first place. In our case two or more different orbits in the lower-symmetry space group merge to form a single orbit in the higher-symmetry space group.

The $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$ions are approximately linear, the $\mathrm{Au}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths are in agreement with those found in the $\mathrm{K}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$ structure (Rosenzweig \& Cromer, 1959). Au $\cdots \mathrm{Au}$ distances of 3.037 (4) $[\mathrm{Au}(1)-\mathrm{Au}(3)]$ and 3.068 (4) $\AA[\mathrm{Au}(3)-\mathrm{Au}(3)]$ are found between three $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$ions almost equally spaced in the $\mathbf{c}$ direction. The observed $\mathrm{Au}(1)-\mathrm{Au}(2)$ distance of 3.560 (1) $\AA$ is slightly longer than $a / 2$ ( $3.546 \AA$ ) because of a slight difference in the $y$ coordinates of $\mathrm{Au}(1)$ and $\mathrm{Au}(2)$.

Coordination around $\mathrm{Tl}^{+}$is highly irregular and slightly different for the two $\mathrm{Tl}^{+}$ions. Three N ligands are situated at ca $2.85 \AA$ from Tl with $\mathrm{Tl}-\mathrm{N}-\mathrm{C}$ angles between 120 and $155^{\circ}$, one or two N ligands between 3.0 and $3.2 \AA$ from Tl with $\mathrm{T} 1-\mathrm{N}-\mathrm{C}$ angles ranging from 97 to $115^{\circ}$, and a number of $\mathrm{CN}^{-}$ions are at $>3.4 \AA$ in side-on position to the $\mathrm{T}^{+}$. The environment of $\mathrm{T} 1^{+}$is completed by an $\mathrm{Au}-\mathrm{C}$ group at ca $3.45 \AA$ (Fig. 2).
$\mathrm{Cs}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$. This salt is isostructural to the Tl salt. $\mathrm{An} \mathrm{Au}(1)-\mathrm{Au}(2)$ distance of 3.71 (1) $\AA$ is predicted if it is assumed to equal $a / 2$. $\mathrm{Au}(1)-\mathrm{Au}(3)$ and $\mathrm{Au}(3)-$ $\mathrm{Au}(3)$ distances are $3 \cdot 12$ (1) $\AA$ assuming that the Au atoms are equally spaced along the $c$ axis. With positional coordinates taken from the Tl salt and cell constants from the Cs salt, the resulting distances are $3 \cdot 72$ (1) $[\mathrm{Au}(1)-\mathrm{Au}(2)], 3 \cdot 11$ (1) $[\mathrm{Au}(1)-\mathrm{Au}(3)]$ and
$3 \cdot 14(1) \AA[\mathrm{Au}(3)-\mathrm{Au}(3)]$. In any case, the $\mathrm{Au} \cdots \mathrm{Au}$ distances are notably longer than in the Tl salt.

The implications of the crystal structures described here on the luminescence properties are discussed elsewhere (Blom, 1983).

Table 1. Fractional coordinates and equivalent isotropic temperature factors ( $\AA^{2}$ ) (e.s.d.'s in units of least significant digit in parentheses)

| $U_{\mathrm{eq}}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}\right)$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $U_{\text {cq }}$ |
| Tl(1) | 0.7802 (3) | $0 \cdot 2828$ (1) | 0.4138 (7) | 0.041 (4) |
| Tl(2) | 0.2242 (3) | 0.4692 (1) | 0.4179 (7) | 0.041 |
| $\mathrm{Au}(1)$ | 0.0 | $0 \cdot 1210$ (1) | 0.25 | 0.034 (7) |
| C(11) | 0.0 | $0 \cdot 1858$ (1) | 0.25 | 0.035 (3) |
| N(11) | 0.0 | 0.2235 (1) | 0.25 | 0.048 (15) |
| C(12) | 0.0 | 0.0562 (1) | 0.25 | 0.035 (3) |
| N(12) | 0.0 | 0.0185 (1) | 0.25 | 0.049 (16) |
| $\mathrm{Au}(2)$ | 0.5 | $0 \cdot 1316$ (1) | 0.25 | 0.034 |
| C(21) | 0.5 | 0.1963 (1) | 0.25 | 0.035 |
| N(21) | 0.5 | 0.2340 (1) | 0.25 | 0.049 |
| C(22) | 0.5 | 0.0668 (1) | 0.25 | 0.035 |
| N(22) | 0.5 | 0.0292 (1) | 0.25 | 0.048 |
| $\mathrm{Au}(3)$ | $0 \cdot 5020$ (4) | 0.3763 (1) | 0.4178 (2) | 0.032 (7) |
| C(31) | 0.2857 (5) | 0.3356 (1) | 0.4117 (5) | 0.040 (8) |
| N(31) | 0.1640 (4) | 0.3110 (1) | 0.4022 (4) | 0.066 (11) |
| C(32) | 0.7183 (5) | 0.4170 (1) | 0.4132 (5) | 0.040 |
| N(32) | 0.8381 (4) | 0.4422 (1) | 0.4045 (4) | 0.066 |



Fig. 1. A stereoscopic view of the structure (ORTEP; Johnson, 1976). Thermal ellipsoids are drawn to include $50 \%$ probability.


Fig. 2. (a) Coordination of $\mathrm{Tl}(1)$. (b) Coordination of $\mathrm{Tl}(2)$.

Table 2. Interatomic distances ( $\AA$ ) and angles ( ${ }^{\circ}$ ) (e.s.d.'s in units of least significant digit in parentheses)

| $\left\lfloor\mathrm{Au}(\mathrm{CN})_{2}\right\}^{-}$group |  |  |  |
| :--- | :--- | :--- | ---: |
| $\mathrm{Au}(1)-\mathrm{C}(11)$ | $1.970(2)$ | $\mathrm{C}(11)-\mathrm{N}(11)$ | $1.148(2)$ |
| $\mathrm{Au}(1)-\mathrm{C}(12)$ | $1.971(2)$ | $\mathrm{C}(12)-\mathrm{N}(12)$ | $1.148(2)$ |
| $\mathrm{Au}(2)-\mathrm{C}(21)$ | $1.971(2)$ | $\mathrm{C}(21)-\mathrm{N}(21)$ | $1.145(2)$ |
| $\mathrm{Au}(2)-\mathrm{C}(22)$ | $1.970(2)$ | $\mathrm{C}(22)-\mathrm{N}(22)$ | $1.146(2)$ |
| $\mathrm{Au}(3)-\mathrm{C}(31)$ | $1.972(2)$ | $\mathrm{C}(31)-\mathrm{N}(31)$ | $1.145(2)$ |
| $\mathrm{Au}(3)-\mathrm{C}(32)$ | $1.971(2)$ | $\mathrm{C}(32)-\mathrm{N}(32)$ | $1.147(2)$ |
| $\mathrm{C}(31)-\mathrm{Au}(3)-\mathrm{C}(32)$ | $177.1(2)$ | $\mathrm{Au}(3)-\mathrm{C}(31)-\mathrm{N}(31)$ | $176.6(4)$ |
|  |  | $\mathrm{Au}(3)-\mathrm{C}(32)-\mathrm{N}(32)$ | $175.8(4)$ |

All other $\mathrm{C}-\mathrm{Au}-\mathrm{C}$ and $\mathrm{Au}-\mathrm{C}-\mathrm{N}$ angles are $180^{\circ}$ by symmetry.

| $\mathrm{Au} \cdots \mathrm{Au}$ distances |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{Au}(1)-\mathrm{Au}\left(2^{\prime}\right)$ | 3.560 (1) | $\begin{array}{ll}\mathrm{Au}(1)-\mathrm{Au}\left(3^{\text {II }} \text { ) }\right. & 3.037(4) \\ \mathrm{Au}(3)-\mathrm{Au}\left(3^{\text {lv }}\right) & 3.068(4)\end{array}$ |  |
|  |  |  |  |
| Coordination around $\mathrm{T}^{+*}$ |  |  |  |
| $\mathrm{Tl}(1)-\mathrm{N}\left(11^{1}\right)$ | 2.815 (4) | $\mathrm{C}(11)-\mathrm{N}(11)-\mathrm{Tl}(1)$ | 129.8 (1) |
| $\mathrm{Tl}(1)-\mathrm{N}\left(11^{\text {iil }}\right.$ ) | 3.664 (4) | $\mathrm{C}(11)-\mathrm{N}(11)-\mathrm{Tl}(1)$ | 87.0 (2) |
| $\mathrm{Tl}(1)-\mathrm{N}\left(21^{1}\right)$ | 2.897 (4) | $\mathrm{C}(21)-\mathrm{N}(21)-\mathrm{Tl}(1)$ | 120.8 (1) |
| $\mathrm{Tl}(1)-\mathrm{N}\left(21^{\text {ili }}\right)$ | 3.483 (4) | $\mathrm{C}(21)-\mathrm{N}(21)-\mathrm{Tl}(1)$ | 81.6 (1) |
| $\mathrm{Tl}(1)-\mathrm{N}\left(31^{\text {i }}\right.$ ) | 2.857 (4) | $\mathrm{C}(31)-\mathrm{N}(31)-\mathrm{Tl}(1)$ | 155.9 (3) |
| $\mathrm{Tl}(1)-\mathrm{N}\left(31^{\text {iv }}\right.$ ) | 3.040 (4) | $\mathrm{C}(31)-\mathrm{N}(31)-\mathrm{Tl}(1)$ | 99.1 (3) |
| $\mathrm{Tl}(1)-\mathrm{N}\left(31^{\text {III }}\right)$ | 3.414 (4) | $\mathrm{C}(31)-\mathrm{N}(31)-\mathrm{Tl}(1)$ | 109.2 (2) |
| $\mathrm{Tl}(1)-\mathrm{Au}\left(3^{\text {l }}\right.$ ) | 3.463 (4) | $\mathrm{C}(31)-\mathrm{Au}(3)-\mathrm{Tl}(1)$ | 85.8 (2) |
| $\mathrm{Tl}(2)-\mathrm{N}\left(12^{\text {vi }}\right.$ ) | 2.904 (4) | $\mathrm{C}(12)-\mathrm{N}(12)-\mathrm{Tl}(2)$ | $121 \cdot 1$ (1) |
| $\mathrm{Tl}(2)-\mathrm{N}\left(12^{\text {iii }}\right)$ | 3.631 (4) | $\mathrm{C}(12)-\mathrm{N}(12)-\mathrm{Tl}(2)$ | 84.1 (2) |
| $\mathrm{Tl}(2)-\mathrm{N}\left(22^{\text {vl }}\right.$ ) | 2.866 (4) | $\mathrm{C}(22)-\mathrm{N}(22)-\mathrm{Tl}(2)$ | 129.5 (1) |
| $\mathrm{Tl}(2)-\mathrm{N}\left(22^{\text {il }}\right.$ ) | 3.427 (4) | $\mathrm{C}(22)-\mathrm{N}(22)-\mathrm{Tl}(2)$ | 89.2 (2) |
| $\mathrm{Tl}(2)-\mathrm{N}\left(32^{1}\right)$ | 2.861 (4) | $\mathrm{C}(32)-\mathrm{N}(32)-\mathrm{Tl}(2)$ | 154.0 (3) |
| $\mathrm{Tl}(2)-\mathrm{N}\left(32^{\text {iv }}\right.$ ) | 3.091 (4) | $\mathrm{C}(32)-\mathrm{N}(32)-\mathrm{Tl}(2)$ | 97.9 (3) |
| $\mathrm{Tl}(2)-\mathrm{N}\left(32^{v}\right)$ | $3 \cdot 179$ (4) | $\mathrm{C}(32)-\mathrm{N}(32)-\mathrm{Tl}(2)$ | 115.4 (3) |
| $\mathrm{Tl}(2)-\mathrm{Au}\left(3^{\prime}\right)$ | 3.446 (4) | $\mathrm{C}(32)-\mathrm{Au}(3)-\mathrm{Tl}(2)$ | 86.0 (2) |

* Superscripts indicate symmetry operations applied to N or Au positional parameters as given in Table 1: (i) $x, y, z$; (ii) $\frac{1}{2}-x, \frac{1}{2}-y$, $\frac{1}{2}+z$; (iii) $\frac{1}{2}+x, \frac{1}{2}-y,-z$; (iv) $-x,+y, \frac{1}{2}-z$; (v) $-x,-y,-z$; (vi) $\frac{1}{2}+x, \frac{1}{2}+y, \frac{1}{2}-z$. Translations by a full unit cell are omitted. Symmetry operations are not given for the atoms defining angles. They are the same as for the corresponding distances next to them.


## References

Arend, H. (1982). Personal communication.
Blom, N. (1983). Thesis. Struktur und Lumineszenz von Dicyanoauraten(I). Univ. of Bern.
Day, P. (1975). J. Am. Chem. Soc. 97, 1588-1589.
Engel, P. (1983). Z. Kristallogr. 163, 243-249.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Johnson, C. K. (1976). ORTEP. Report ORNL-5138 (third revision of ORNL-3794). Oak Ridge National Laboratory, Tennessee.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Mason, W. R. (1976). J. Am. Chem. Soc. 98, 5182-5187.
Pantazatos, P. \& Werner, S. A. (1973). Acta Cryst. A29, 577-578, and references cited therein.
Rosenzweig, A. \& Cromer, D. T. (1959). Acta Cryst. 12, 709-712.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Tichý, K. (1973). Program C4EA. Internal Report AF-SSP-69, Institut für Reaktortechnik der ETH Zürich, August 1973.
WERNER, S. A. (1971). Acta Cryst. A27, 665-669.
WONDRATSCHEK, H. (1976). Z. Kristallogr. 143, 460-470.


[^0]:    * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39520 (7 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

